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Abstract

Genetic algorithms (GAs) are a method of using the concept of ‘survival

of the fittest’ to find solutions to some problems. They involve taking a

collection of possible solutions to a problem, and gradually changing and

combining them until an optimal solution is found.

This report explores a method of reducing the time it takes a GA system to

come to a solution by using multiple populations, and migrating the better

solutions from each population to the others.

Two methods are introduced and tested: (i) making a copy of the best, and

sending them to all the other populations, and (ii) removing the best, and

placing them in other populations.
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Chapter 1

Introduction

Genetic algorithm (GA) systems use principles taken from the natural world in order to

efficiently search a problem space to find a good solution in that space. The underlying

idea behind GA systems is basically one of ‘survival of the fittest’. The search that

they do is a heuristically driven one, and is performed by altering a possible solution in

ways analogous to biological mutation and genetic recombination. This report details

efforts towards optimising this process further, by separating the population into a

number of distinct sub-populations, and allowing limited migration between them.

1.1 Background

1.1.1 Terms

The language of genetic algorithms is strongly influenced by biology. Below are terms

that are used to describe the elements of the system in this report.

organism A blanket term describing an individual representation of a potential solu-

tion to the problem. The most important feature of an organism is the genotype

(chromosome) that it contains that is the representation of this particular solu-

tion. Information such as ancestry may also be included, depending on what is

desired.

gene An individual element, a number of which make up a chromosome. For example,

if the solution being sought by the system is a number, then a gene may be a

binary digit. Genes are typically what mutation changes.
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genotype A sequence of genes. A genotype is a representation of a solution to the

problem. This tends to be synonymous with chromosome.

phenotype This is the genotype after it is turned into a potential solution. For

example, if the genotype is the binary number ‘1001’, the phenotype may be ‘9’.

crossover This is where the genotypes from two organisms are combined to produce

a new one. For example, if genotype A is ‘12345’, and genotype B is ‘67890’,

these may cross to produce a number of different possible results, such as ‘12390’

and ‘67845’.

mutation This is where a random point on a genotype is selected, and changed at

random.

population This is simply a group of organisms. Generally, crossover may happen

only between organisms within a population.

1.1.2 Genetic Algorithms

A genetic algorithm is based on a collection of representations of potential solutions, i.e.

genotypes. There is no particular form that these representations must take, however

they are typically designed so that the problem domain can be easily expressed in

them. Generally the representations are a binary string, however there are situations

where, for example, real numbers may be more appropriate.

A population consists of a number of these, with a size that is generally fixed. Every

generation, the genotype from each organism is converted into its phenotype and is

checked against a fitness function. The fitness function gives it a value corresponding

to how good it is, generally with a higher value representing a better answer. For

example, if the purpose of the system was to find the global minima of

f(x) = x2

then we could provide

f(x) = −x2

as a fitness function, and the system will eventually settle on x = 0 as being the best

solution.

In order to generate the solutions, the system is started with each organism being

randomly constructed. The fitness function is applied to every organism, and the best

2



ones undergo crossover, with the new organisms created from this replacing the worst.

This tends to create a situation, where good pairs combine with one-another, and

the best descendants comprise most of the population, and the average fitness of the

population rises. It can happen that the random starting state may not contain the

required genetic material to get a solution, so the mutation operation is required in

order to allow new genes to be created.

With this in mind, the step-by-step operation of a typical GA system is as follows:

1. Create a randomly generated population of genotypes.

2. Arrange the population according to fitness of the phenotypes.

3. Perform crossover on the best ones, with the newly created organisms replacing

the worst.

4. Randomly mutate a, typically small, selection of individuals in the population.

A common alternative is to have a chance of mutating the organism produced

when crossover occurs.

5. If an acceptable solution has not been generated, go to step 2.

There are a few factors involved here that can affect how the system comes up with

a solution. It isn’t necessarily most efficient to always take from the very best for

crossover. It is better to select at random, but bias in favour of those at the top.

This keeps the best ones around, but also allows more genetic diversity which could

help prevent the system getting stuck in a local minima. It is also necessary to avoid

mutation rates that are too extreme. If the rate is too high, then organisms may get

too damaged, and a solution isn’t reached. If it is too low, then the system may take

too long in coming to a solution.

In some cases, another genetic operator is also introduced: inversion. This is where

a segment of the genotype is reversed (Beasley, Bull, and Martin, 1993b). It is not

implemented in the system detailed in Chapter 3, as a key idea there is to keep the

system relatively simple. Inversion is useful when there is a distinct meaning placed

on the order of the genes.

An important part of using a GA system is determining when you have come to a

solution. There are two ways of doing this:

1. Has the population reached convergence?

2. What is the maximum or average fitness?

3



Convergence is a measure of how alike each genotype is compared to the others. A

gene is said to have converged when 95% of the population share the same value. The

entire population is considered to be converged when all of the genes have converged

(Beasley et al. (1993b), cited in De Jong (1975)). The logic behind this is that if the

population has converged, then we are in a situation where any deviation from the

current best is being punished, and the population can’t get any better. There is a

problem with this however. If the population is stuck in a local minima, it may take

some time and a few lucky mutations to pull it out.

There are some circumstances where you can use your fitness function as a guide.

In the f(x) = −x2 example above, we know that the maximum fitness is zero and can

stop when we get an organism that reaches that. However in more complex problems,

and the sort that GA systems are likely to be used against, it is possible that the

maximum fitness isn’t known.

1.1.3 Multiple Populations

On their own, GA systems are very effective, however sometimes they can take a long

time to come to a solution. One potential way of speeding them up is to look at the

idea of multiple populations. This is where there is a number of separate populations

of organisms, but with the ability for information, in the form of organisms, to move

between them. This can be likened to a geographical situation where you have several

populations separated by something like a mountain range, but every so often some

individuals manage to travel across, contributing anything useful that evolved in its

original home to the gene pool on the other side.

On a typical GA system, simply increasing the population size doesn’t consistently

decrease the number of generations taken to a solution. The benefit gets less and less,

and eventually a point is reached where the computational overhead due to sorting a

large number of entries exceeds the gain produced by them coming to a solution faster.

Figure 1.1 illustrates the lessening of benefit gained from increasing the population size

on the problem described in Section 4.1.3.

As well as giving us the potential of a speedup due to benefits of the method, the

use of multiple populations also allows for a very natural parallelisation using multiple

computers or processors.

Just like with traditional GA systems, there are a number of parameters that can

greatly affect the behaviour of the system. The migration frequency is a measure of how

often organisms travel between locations, and the migration rate is how many travel

4
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Figure 1.1: The effect as population size increases, averaged (mean) over 100 tests.

each time. There is also the selection and replacement policy, which determine who

gets picked to travel, and where they are placed when they get to the destination, if

applicable. Other research has shown that the best method for determining migration

selection and placement is to select the best from the source, and replace the worst at

the destination (Cantú-Paz, 1999a).

Another thing to consider is how the migration happens. There is the biologically

inspired method, where a particular organism is removed from its source population

and moved to another. Given the ability to copy easily in an electronic medium, we

can also send duplicated organisms to the new location. For this report, both methods

were implemented and tested.

1.2 Project Aims

The aim of this project was to build a general library that will allow the rapid de-

velopment of a GA system. With this library, build a system that creates a genetic

algorithm environment with the concept of exchange between separate populations,

and analyse the effect his has on the evolution of solutions. There are many factors

and measures of quality that can be applied to GAs, for the purpose of this the only

5



one that will be looked at is the time, in generations, to a solution. A breakdown of

the initial aims and objectives can be found in Appendix A.

1.3 Overview

In Section 3 I will be talking about the actual implementation of the system, both the

library part, and the application developed to do multiple population testing. Section 4

contains the results extracted from the system with various parameters changed in order

to see the effect that they have, along with some analysis of them. Finally, Section 5

will draw together all the various results, and provide a determination of what they

mean.
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Chapter 2

Literature Survey

2.1 GA History and Background

The idea of natural selection incrementally changing something in a way which leads

to its gradual improvement has been known for some time. In more recent times, this

concept has been applied to instances of solutions to problems.

There has been a great deal of work done on genetic algorithm systems in the past.

An influential early work is De Jong’s 1975 PhD thesis (De Jong, 1975). De Jong

analyses the effects of various parameter changes on GA systems, and details a set of

test problems that have been used in many other papers since then. A particularly

difficult problem is getting genetic algorithms to find the global minima of the function

shown in Figure 2.1.

This set off a large amount of research a while later, with many books and papers

coming out in the 1990’s, especially, although by no means exclusively, early on. John

Koza, a very influential researcher in the field started much of it off with his book in

1992, which contained a broad range of information and example code (Koza, 1992).

Over the next ten years, there was a substantial amount of papers and books

produced on the various subtopics of genetic algorithms and related topics. Many ones

relevant to this report tend to come out of the Illinois Genetic Algorithms Laboratory

(IlliGAL)1.

The general GA principles used in the system described in this report are based

on those detailed in Beasley, Bull, and Martin (1993a), with some simplifications and

alterations. This paper details what is pretty much the canonical GA system. The

main points of divergence between what is described in Beasley et al. (1993a) and my

1http://www-illigal.ge.uiuc.edu/index.php3
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Figure 2.1: Shekel’s Foxholes

implementation are in the mutation and the crossover selection. Beasley et al. describe

tournament crossover selection, where a probability of being selected is assigned to each

organism according to its fitness level. My implementation does straight selection of

the best. The paper also describes mutation as being done to the organisms resulting

from crossover as they are created, in my version the individual to mutate is selected

randomly.

The crossover method that the paper explains, single-point crossover, is the same

as the one implemented in this project.

As well as describing the standard GA system, Beasley et al. (1993a) also looks

at a few other variations, such as different search methods. After this, it goes into

a description of the theory behind GAs, and why they work. An interesting point

mentioned here is that:

There is no accepted “general theory” which explains exactly why GAs

have the properties they do. Nevertheless, several hypotheses have been

put forward which can partially explain the success of GAs. These can be

used to help us implement good GA applications. (Beasley et al., 1993a,

Section 4.1)

The authors then proceed to discuss such hypotheses as schemata (Holland, 1975),
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the building block hypothesis (Goldberg, 1989), and principles such as exploration and

exploitation.

Schemata, and schema theory is a description of how genes that are ‘good’ (con-

tribute to a high fitness score) tend to remain in the population and end up combining

with others, which causes the fitness of these combinations to increase. If there is a

sufficient variety of schema in the population, then many places in the search space are

being tested. This is known as implicit parallelism.

The building block hypothesis explains the effectiveness of GAs as a collection of

genotypes that gradually ‘pick up’ good genes. This relies on the coding scheme to

an extent. Beasley et al. (1993a), Section 4.2 states that the important aspects of a

coding scheme are that:

1. any genes who have a different effect when in the presence of specific other genes

should be as close to those other genes as possible, while

2. there is as few as possible incidences of such interaction between genes.

If there is a pair of genes, both of which are required in order to get any benefit from

either of them, adhering as close as possible to these rules reduces the chance of them

being separated during crossover.

The concepts of exploration and exploitation described by Beasley et al. (1993a)

is of particular relevance to this report. With a finite population size, some trade-off

must be made between concentrating the search around a known-good location on the

fitness-space, and looking in other locations for somewhere that is hopefully even better.

In a typical GA system, mutation is the operator that contributes to exploration,

while crossover does exploitation. In a multiple population system, the separation of

the populations allows each population to perform its own exploration/exploitation

process with ‘refined’ suggestions for exploration sent to the other populations on a

regular basis.

The paper proceeds to discuss other things that are important in the context of

GAs, but less important for this report, such as optimising of fitness functions, and

applications of GAs in the real world.

One other thing that is mentioned of relevance however is two problems that GA

systems are vulnerable to. These were briefly mentioned in Section 1.1.2. They are

premature convergence and slow finishing.

Premature convergence is caused when a few individuals that are fit compared to

the rest of the population, but aren’t optimal, end up filling the population, which
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causes it to converge on a local minima. Once this has happened, the only way out

is with mutation, which is equivalent to a slow random search. Beasley et al. (1993a)

detail a solution which involves controlling the reproduction of organisms.

Slow finishing is effectively the opposite problem. It is caused when the population

has mostly converged, but hasn’t yet located the global minima. There is little dif-

ference between the best individuals and the average ones, and so there isn’t a large

amount of selection pressure. If fitness scaling is used, which is sometimes necessary

when a proportional selection method is used, then a particularly poor organism can

cause this to occur. This may also be a sign of having a too high mutation rate.

2.2 Multiple Populations

Multiple populations in GAs comes under the wing of a somewhat broader concept of

parallel GAs. Sprave (1994) refers to the main types of these as the migration model

and the diffusion model. The former is the one relevant to this report.

Erick Cantú-Paz of IlliGAL has done a significant amount of work towards devel-

oping the field of multiple population genetic algorithms. In Cantú-Paz (1999a), the

various methods of selection and replacement are described and compared. The four

methods discussed are:

1. Select good, replace random.

2. Select good, replace bad.

3. Select random, replace random.

4. Select random, replace bad.

Initially, the comparison of methods is approached from a theoretical basis, look-

ing at the proportion of good individuals with every generation under the different

methods. The result of these is that the ‘select random, replace random’ method is

equivalent to a single population, and that the best method is ‘select good, replace

bad’. Experimental results are also used to confirm the effects.

The claim that multiple populations lead to superlinear speedups is looked at, and

it is determined that in many cases the speedup is gained by the increased selection

pressure from selecting the good individuals, and replacing the worst ones. However,

the point is made that this may not always be the case. There may be circumstances

in which real-time speedup is gained by such things as multiple populations being able
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to fit into the processor’s cache better. These types of considerations are not looked at

in this report.

Another paper by the same author, Cantú-Paz (1999b), discusses a few other pa-

rameters of multiple population GA systems. In short, it looks into optimising the

parameters for degree of connection of each population (how many neighbours each

population has), and the rates of migration. These results are not entirely relevant

to this report, as they have a significantly different migration model. In Cantú-Paz

(1999b), all the populations evolve to convergence, and then migration occurs, and the

cycle repeats. Other studies have shown that this can give equal results to the method

described in this report, which has regular migration regardless of the convergence

level.

A comparison of various different methods of doing migration is done by Wang, Ma-

ciejewski, Siegel, and Roychowdhury (1998). The problem domain here is the travelling

salesman problem. Five methods are compared:

independent Each population evolves separately, and there is no exchange between

them at all. This is equivalent to running a single population system many times,

and taking the best result.

migration This is closest to the copy migration done in this report. It has a number of

populations, and a copies of the best organisms migrate between them regularly.

There are a few differences between Wang et al.’s procedure and the one in this

report. These are detailed below.

partitioned The search space is split into a number of partitions, each population

only searches its part.

segmentation The genotype starts off as a small part of a complete potential solution,

and as good ones are found, they are combined to create larger solutions, which

are further combined until a complete, good solution is found. Note that no

migration happens in this, however the results of the populations are combined

when the larger parts are created.

segmentation-migration This is very similar to segmentation, however there are

periodic migrations.

The last two are designed in a way that is quite domain specific, but could probably

still be adapted to other problems.
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The differences between the system described in Chapter 3 and Wang et al. (1998)

are substantial, but are likely not sufficient to make any comparison invalid. In Wang

et al. (1998), there are a larger number of populations, typically sixteen. The migration

between them is done by making a copy of the best one from each population Pi, and

sending it to P(i+1)modN for the first migration event, P(i+2)modN for the second, and so

on (where N is the number of populations). The results that they get are encouraging,

and show that the migration method typically does very well.
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Chapter 3

Implementation

The GA system was written in Java, as its object-oriented nature allows for the code to

be written in a modular way, allowing different methods to be experimented with easily.

There are other practical benefits, such as platform independence and fast development

time.

There are two main parts to the implementation:

1. a GA library, providing functions and a framework that can be used by a pro-

grammer wishing to implement a GA system (Section 3.1), and

2. an implementation of a complete GA system, used to generate the results in this

report (Section 3.2).

3.1 The Library

The library is a set of three abstract classes. They allow data to be passed around

internally in a consistent way, even though the specifics of things such like the storage

of the genotype may vary between implementations.

Each class must be extended in order to provide functionality specific to the problem

that will be applied to the GA system. The classes are:

Genome This class contains the genotype,

Cell This class contains a Genome instance, and the other information such as

caching the fitness to avoid the need for recalculation, and family history. This

contains all the information that would be associated with the term ‘organism’

described in Section 1.1.1.
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Environment This class contains a collection of Cells, the fitness function, and gov-

erns the interactions between the organisms it contains.

3.1.1 Genome class

This class allows for common storage of the genotype. This is necessary as the actual

stored format of the genotype will vary according to the problem domain. This class

doesn’t provide actual storage, but it does define a few methods that can be used in

order for other classes (such as the Cell class) to perform common operations on the

genotype, no matter what the representation is.

3.1.2 Cell class

The Cell class provides an abstraction of the genotype. It allows the genotype to be

dealt with indirectly, and contains extra information such as the fitness of the cell.

It includes calls to do such actions as crossover and mutation which are implemented

by the extending class. There is also the facility for unique identification strings, and

keeping family trees, however these haven’t been fully implemented due to the lack of

need for this project.

3.1.3 Environment class

The Environment class does most of the work out of the library classes. It controls

the specific actions that happen in the environment, such as determining when things

like crossover and mutation happen, and ensuring that they do. As most of the low

level processing has been put into the Cell and Genome classes, the abstract version

of the Environment class is fairly complete. The main thing that an implementing

class needs to define is the fitness function.

3.1.4 Using The Library

The classes detailed above provide an abstract model of a complete GA system. There

are other factors such as a user interface, and for the purpose of migration, something

to move Cells between Environments. However, most of the work related to the

individuals in the system is done in these. The application class that does the admin-

istration of the program needs to call the generation() method in the Environment

class. This goes through the following steps:
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1. Ensure that the Cells are sorted into fitness order to aid later operations that

depend on the ranking of the cells

2. Perform crossover on the population:

(a) Select a number of individuals from the best of the population, equal to

twice the number of new ones we want to generate.

(b) Select random pairs from the above selection, and call the crossover() method

in the Cell class on them.

(c) Replace the worst individual in the population with this newly created one.

(d) Repeat from (b) until we have sufficient new individuals.

3. For each Cell in the population:

(a) Select a random number n.

(b) If n is less than or equal to the mutation rate, then call the mutate() method

on the Cell.

4. Clear some internal state information so it will be recalculated if necessary.

The actual implementation of the crossover() and mutate() methods is left up to the

extending class, as it is potentially quite specific to the problem. If the genotype was

a tree structure, then quite different operations would be necessary than if it was a

binary string.

Some of the processes are implemented in ways that are known not to be the best.

As an example, the tournament crossover selection methods as described in Beasley

et al. (1993a) are better than the method that is performed in the Environment class.

This was done intentionally with the aim of helping the system as little as possible,

so that hopefully any effects are caused only by migration, and not by its interaction

with other processes. For an analysis of more efficient methods, see Bäck and Schwefel

(1993).

3.2 The Application

The library as described above requires some further code to extend it in order for it

to be useful. This section describes the implementation used to generate the results in

Chapter 4.
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Once a complete single population system was written and working, it was dupli-

cated, and the duplicate was renamed from the original ‘Test1’ to ‘Test2’, hence the

“T2” suffix to the classnames. Test2 was then enhanced to allow multiple populations,

and it was on this program that testing was done.

Most of the classes in this program extend the library classes, and add to them the

code required to deal with the specific problem. The classes are:

GenomeT2 This class deals with the specifics of storing and accessing the genotype

as a sequence of bytes.

CellT2 This implements the genotype-specific bits, such as crossover and mutation.

EnvironmentT2 This contains functions that compare cells, such as the fitness func-

tion and the convergence calculation.

EnvWrapperT2 This holds a particular instance of an EnvironmentT2 class along

with various variables specific to it.

Test2 This handles all the input/output, including user interaction. It also controls

the migration between environments.

The interface allows all the variables, such as mutation rate, crossover rate, fitness caps

and so on to be specified interactively. It also allows scripts to be executed to allow

multiple trials to be run. All the code for this is inside the Test2 class. This class

holds a list of EnvWrapperT2 instances, each of which holds an EnvironmentT2

class and associated variables.

Figure 3.1 is a UML diagram of the classes and relationships between them for the

application, and the library. The library part is the three abstract classes listed to the

left. This diagram only shows the important data fields and methods, there were a

number that were only used internally that aren’t included.

There are other features, such as the ability to stop a run when the convergence

measure or the average fitness reach a certain value.

3.2.1 Migration

As mentioned above, the Test2 handles migration. It implements the two different

methods mentioned in Section 1.1.3, one involving duplication, where an organism is

copied and that copy is placed in the other populations, and the other method where

the organism is removed from its initial population and placed in the new one.

16



Environment
#cells: ArrayList
#cosmicRayFreq: double = 0.0
#crossoverRate: int = 0
#initCells(size:int): void
+generation(): void
+fitness(c:Cell): double
+crossover(): void
+getFitnesses(sort:boolean): double[]
+getCellConvergence(n:int,sort:boolean): double
+getCellConvergence(c:Cell): double
+getCell(c:int,sort:boolean): Cell
+setCell(i:int,c:Cell,sort:boolean): void

Cell
#DNA: Genome
+mutate(): void
+crossover(c:Cell): void
+copy(newID:String): Cell

Genome
#size: int
+randomise(): void
+copy(): void

GenomeT2
#data: byte[] = new byte[8]
+copy(): Genome
+getGene(b:int): byte
+getGene(): byte[]
+putGene(b:int,val:byte): void

CellT2

+mutate(): void
+crossover(c:Cell): void
+copy(newID:String): Cell

EnvironmentT2

#initCells(size:int): void
+generation(): void
+fitness(c:Cell): double
+getCellConvergence(c1:Cell): double

EnvWrapperT2
-env: EnvironmentT2
-varCosmic: double
-varCrossrate: int
-varPopn: int
+setEnv(e:EnvironmentT2): void
+getEnv(): EnvironmentT2
+setVarCosmic(c:double): void
+getVarCosmic(): double
+setVarCrossrate(c:int): void
+getVarCrossrate(): int
+setVarPopn(p:int): void
+getVarPopn(): int
+create(): void

Test2
+environments: ArrayList
+main(args:String[]): void
+doCommandLine(): void
+parseCmdLine(cmdLine:String,defStream:PrintStream): int
+loadScript(opts:ArrayList,defStream:PrintStream): Exception
+dispatch(cmd:String,output:PrintStream,options:ArrayList): int
+cmdSet(o:PrintStream,opts:ArrayList): void
+cmdCreate(o:PrintStream,opts:ArrayList): void
+cmdDestroy(o:PrintStream,opts:ArrayList): void
+cmdRun(o:PrintStream,opts:ArrayList): void
+cmdDisplay(o:PrintStream,opts:ArrayList): void
+cmdStats(o:PrintStream,opts:ArrayList): void
+cmdExtract(o:PrintStream,opts:ArrayList): void
+cmdReplace(o:PrintStream,opts:ArrayList): void
+cmdReset(o:PrintStream,opts:ArrayList): void

Library

Figure 3.1: UML diagram of the library and application
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The algorithm for determining how migrants move in the latter method is:

1. Build a list of all the organisms that are going to migrate.

2. Set a migrant pointer to point to the first organism in the list.

3. Set a destination pointer to point to the first population.

4. If the organism pointed to by migrant is not from the population specified by

destination:

(a) Move the organism from the original population to this one.

(b) Increment the migrant pointer

5. Increment the destination pointer, starting again at the first population if neces-

sary.

6. If there are still organisms to move, go to step 4.
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Chapter 4

An Investigation of Migration

4.1 Experimental Method

This section details the actual experimental setup used to generate the results. The

task that the GAs were given is described in 4.1.3.

The two methods of migration explored, one where the migrants are copied, and one

where they are actually moved, have significantly different results, and so are treated

independently.

In these results, there are a number of different factors being considered, which are

outlined here.

migration rate Migration rate is a count of how many organisms migrate every time

a migration event occurs.

migration frequency This determines the time interval, in generations, between

each migration event. A higher value represents less migration. Note that this is

quite distinct from migration rate.

number of populations This is how many populations there are in the system, with

migration occurring between them.

population size This is a count of how many organisms are in each population.

time to solution This is a measure of the number of generations that have elapsed

before the first optimal solution was created.

On the graphs presented here, the independent variable is migration frequency, and

the dependant variable is the time to a solution. A generation is a complete crossover
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and mutation cycle. All of the tests done here are averaged over 100 samples as there is

a large amount of stochastic variation involved. Even with this large number of trials,

there is a noticeable amount of variation in the results.

The various graphs illustrate the effects that changing population sizes have on

the speed of the GA system. They are all compared to a baseline situation which is

a single population with the same number of organisms as the multiple population

system. Except for the baseline, each line on the graph represents a different migration

rate.

Due to the fact that smaller differences in migration frequency have a greater effect

when the frequency is low than when it is high, more sampling was done when the

migration frequency was less than ten. This can be seen on the graphs as the closer

group of points on the left hand side of each plot.

In these tests, the crossover rate for the multiple populations is one (meaning that

one new individual is created for every generation per population), and the mutation

rate is 0.05 (meaning that every organism has a one in twenty chance of mutating each

generation).

In order to make the comparison between the performance of the single population,

and that of the multiple populations, the crossover rate of the single populations is

adjusted. For example, if we are comparing a three population system with a crossover

rate of one to a single population, we need to ensure that the same number of organ-

isms are created every generation. The three population system will gain three new

organisms, one for each population. To compensate for this, we need to increase the

crossover rate of the single population to be three. Especially on smaller populations,

the crossover rate has a very large effect on the time to a solution.

4.1.1 Copy Migration

For the copy method of migration, each time migration happens, the best organism from

each population is copied out, and replaces the worst in all the other populations. This

activity happens in parallel, so that the new organisms being inserted don’t interfere

in the selection process.

The migration rate must be watched in this method, as the number of new or-

ganisms a population gets is equal to the number of other populations multiplied by

the migration rate. This can easily lead to an attempt to add more organisms to a

population than it can hold, or replacing its entire population with new ones.
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4.1.2 Move Migration

In this method of migration, the organisms aren’t copied. Rather, they are removed

from their initial population and placed into the new one. The actual method of

determining where the migrating organisms end up is detailed in Section 3.2.1.

When migration happens, the best from each population travel to another popula-

tion, filling the gap that was newly created there. If they are good enough, they are

included in crossover, and so their genetic material gets included in the new population.

4.1.3 The Problem

GA systems can be applied to many different types of problem. For the analysis done

in this report, the problem domain is described below.

The task of the GA system is to come up with a genotype consisting of a set of

if...then statements that will navigate to the centre of a grid as in Figure 4.1. The

genotype is evaluated into eight of these conditionals, four of which allow movement

in the x direction, four in the y direction. The genotype is dealt with as a sequence of

eight hexadecimal bytes, each byte of which represents a complete if...then statement.

The first nybble is the condition, the second is what happens if the condition is true.

The mapping between the nybbles and what they represent is:

Value 1st Nybble (Condition) 2nd Nybble (Consequent)

0–4 < 0 −1

5–9 > 0 +1

A–F = 0 no change

When the phenotype is evaluated, the first part is applied to the x dimension, the

second to y, the third to x and so on. For example, the following genotype:

26 27 80 70 05 72 18 17

is evaluated as:
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(−5,5) (5,5)

(5,−5)(−5,−5)

(0,0)

Figure 4.1: The grid organisms are tested on

Genotype part Phenotype part

26 if x < 0 then x = x + 1

27 if y < 0 then y = y + 1

80 if x > 0 then x = x − 1

70 if y > 0 then y = y − 1

05 if x < 0 then x = x + 1

72 if y > 0 then y = y − 1

18 if x < 0 then x = x + 1

17 if y < 0 then y = y + 1

When this is tested, the evaluation works like this, assuming it is started in corner

(-5,5):

1. if x < 0 then x = x + 1, moves to (-4,5)

2. if y < 0 then y = y + 1, no change

3. if x > 0 then x = x − 1, no change

4. if y > 0 then y = y − 1, moves to (-4,4)

5. if x < 0 then x = x + 1, moves to (-3,4)

6. if y > 0 then y = y − 1, moves to (-3,3)
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7. if x < 0 then x = x + 1, moves to (-2,3)

8. if y < 0 then y = y + 1, no change

The fitness value is gained by taking the difference in Manhattan distances from

the start and the end. In this example, the initial distance is 10 (|−5|+ |5| = 10), and

the final distance is 5, so the fitness for this is 5. In order to get the final value, this

is repeated three more times, once at each corner, and each distance is summed which

produces the final score. Due to this one doing better from one side than from the

other as a result of it having more x = x + 1 statements than x = x− 1 statements, it

will score five from two tests, and three from the other two, giving it a resulting score

of 16, the maximum possible.

4.2 Results

In this section are the experimental results of the system described above.

4.2.1 Migration by Copying

Two Populations Figures 4.2, 4.3, and 4.4 all show the performance of two popu-

lations, with the migration rate ranging from zero to three. A migration rate of zero

is the situation when there is no migration, so effectively this is the performance of a

number of completely independent populations. The line representing a migration rate

of zero is quite significantly removed from the other ones, which indicates that there is

a very strong effect from the migration. In all the cases, so long as there is migration

happening, then there is very little difference between the migration rates. However

the tests with a rate of two or three typically did better than the test with a rate of

one.

When the number of organisms in each population of the multiple population sys-

tems is twenty or thirty, and the migration frequency is set to approximately five, the

performance is similar to that of one single population of size forty. However, when

the number of organisms in the each population of the multiple population systems is

forty, then having a migration frequency of around ten gives it similar performance to

a single population of size sixty.

Three Populations When comparing between two and three populations, three

scores significantly better, as shown in Figures 4.5, 4.6, and 4.7. However with the
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Figure 4.2: Copy migration, two populations, 20 organisms
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Figure 4.3: Copy migration, two populations, 30 organisms
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Figure 4.4: Copy migration, two populations, 40 organisms

increased crossover rate giving the single population an advantage, they perform very

similarly. About the only difference is that that the point where the single population

and multiple population systems match times is close to five in all cases.

4.2.2 Migration by Moving

This method never manages to exceed the performance of the baseline single population

when the crossover rate is adjusted to keep it equivalent. However, it does do better

than a single population without the crossover rate being raised. (Section 4.1)

Two Populations As can be seen in Figures 4.8, 4.9 and 4.10, this method of

migration tends to do significantly worse than a single population, although it still

does better than a multiple population system with no migration at all (having a

migration rate of zero).

It is interesting to note that here also the migration rate makes very little difference,

provided it actually happens.

Three Populations The performance of this is similar to that of two populations,

however over the three graphs, there is a tendency to get closer to the performance of
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Figure 4.5: Copy migration, three populations, 20 organisms
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Figure 4.6: Copy migration, three populations, 30 organisms
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Figure 4.7: Copy migration, three populations, 40 organisms
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Figure 4.8: Move migration, two populations, 20 organisms
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Figure 4.9: Move migration, two populations, 30 organisms
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Figure 4.10: Move migration, two populations, 40 organisms
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Figure 4.11: Move migration, three populations, 20 organisms

the larger population, as shown in Figures 4.11, 4.12, and 4.13.
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Figure 4.12: Move migration, three populations, 30 organisms
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Chapter 5

Discussion

5.1 Analysis of Results

As can be seen from the results, adding migration does have a noticeable effect, when

compared to the case of a number of completely separate multiple populations. The

general things that can be observed from the results are that migration should happen

quite often for the greatest benefit. This is useful in situations where the problem

being solved by the GA is quite large, and needs to be spread across a network of

computers. Having the network act like one large population requires a large amount

of data to be exchanged, which may become a bottleneck. If each computer was a

population, and only a few organisms travelled across, then the bandwidth required

would be significantly less.

5.1.1 Migration by Copying

With lower delays between migration events, this method performs quite well. The

likely cause of its significant edge over the other migration method is the fact that

good individuals are actually being copied and are displacing the less good ones, which

introduces more selection pressure. While this does make it perform better in this

particular problem domain, this also may cause a similar problem to that of having

a too high crossover value, i.e. premature convergence. The system has an increased

likelihood of getting stuck in a local minima, and not find the optimal solution.

Wang et al. (1998) compares a number of different methods of doing parallel GAs,

including one that is very similar to the migration by copying used in this report. The

parameters they have are significantly different, however. They work with a migration

frequency of five, a migration rate of one, and a very different way of determining
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what population to place the migrants in. Despite these differences, many of which

would harm the speed to a solution (but have benefits in other areas, such as improving

accuracy), it confirms the results found here.

5.1.2 Migration by Moving

This one doesn’t do as well as the single large population does, however it does still

beat multiple populations with no migration. The reason for the comparatively poor

performance is likely to be a result of the fact that, aside from standard crossover,

no organisms are artificially created, unlike the other migration method. This will

also have the effect that systems using this migration method will be less susceptible

to premature convergence, and should give more accurate solutions, as described in

Section 2.1.

5.2 Further Research

There are a large number of things that can be changed in this system in order to

change the results, only a few of which have been touched on here. Some further

things that could be looked at are larger numbers of populations, the crossover rates and

the linkages between populations, i.e. if there is a difference between fully connected

populations and ones that are not. The tests could also be repeated with a more

complex problem, and looked at with an eye to see what the accuracy of the solution

at convergence is, and how migration affects that.

There is in many cases a significant amount of interaction between the various

parameters of the GA system, and exploring how these affect one another could lead

to exploiting particularly efficient combinations.

Another potential avenue for exploration is to determine if varying the fitness func-

tion between populations has an effect. As an example, in the sample problem explored

in this report, if one population put a greater selection pressure on x and the other

put greater selection pressure on y, it is possible that each one would cause part of

the solution to be found very fast, which would then be combined to form a complete

solution. A couple of different methods of doing this are looked at in Wang et al.

(1998). A further variation on these is to have different mutation and crossover rates

in different populations, allowing some populations to lightly cover the search space

finding viable areas, and others to refine the solutions they encounter to find what the

optimal solution is.
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Appendix A

Initial Aims and Objectives

Aims

To implement a system of classes or libraries that will allow the evolution and compe-

tition of genetic algorithms, and to use this to build a system that creates a genetic

algorithm environment that has a concept of physical separation, and analyse the effect

this has on the evolution of solutions.

Objectives

• Build a system that evolves genetic algorithms

– Design a representation of general genetic algorithms that will allow them

to be easily manipulated.

– Design a class or library structure that allows them to be dealt with sensibly.

– Write the code that does this, and test it on basic cases.

• Explore the effects of geographical separation on the evolution of the genetic

algorithms

– Construct a set of problem domains to be used for testing.

– Build a program that contains two (or possibly more) “environments” for

genetic algorithms to evolve inside.

– Run tests, varying some parameters between them (along with having a

control), and recording results.

– Analyse results, and determine if there was or was not a significant effect.
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Appendix B

Source Code For Library
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B.1 Environment class (abstract)

The environment class sets up a structure for cells to be stored in, and compares them to each other
to determine fitness, and who should live, who die, and so on. It also can randomly fire cosmic
rays at cells, or make them crossover with others. It also implements the smallest time segment,
a generation. This abstract class has reasonable default behaviours in place for these things, but
they can be overridden by extending if desired. As the fitness function is domain-specific, it must be
implemented by extending classes.

import java.util.*;

public abstract class Environment {

• ArrayList cells
Stores the collection of Cell objects. The list should be kept sorted with the highest fitness at
the lowest index.

• double cosmicRayFreq
The probability that a particular cell will get hit by a cosmic ray per generation. When a cell
is hit, its mutate() method is called.

• int crossoverRate
This specifies the number of new cells that will be created by crossover.

• boolean sorted
This is true when the lists of cells is sorted by fitness. Anything that alters the list without
ensuring the order should set this to false and a sort will be performed at the next generation.

• int ID LENGTH=10
This sets the length of the ID strings given to the Genomes.

• char[] lastID
The ID number is stored here.

ArrayList cells;

double cosmicRayFreq;

int crossoverRate;

boolean sorted=false;

int ID_LENGTH=10;

char[] lastID;

B.1.1 Constructor

The default constructor creates an empty set of cells, and turns off cosmic rays. This is suitable for
inserting cells into from somewhere else.

public Environment() {

cells = new ArrayList();

cosmicRayFreq=0.0;

}

This constructor starts the environment off with a number of cells. This just calls an abstract method,
which must be overridden to actually do it.

public Environment(int s) {

initCells(s);

}

This is the constructor that will typically be used when setting up a new system. It sets the size, the
cosmic ray rate, and the crossover rate.
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public Environment(int s, double r, int c) {

this(s);

cosmicRayFreq = r;

crossoverRate = c;

}

B.1.2 initCells (abstract)

This method needs to create the Arraylist to put the cells in, and put them there.

protected abstract void initCells(int size);

B.1.3 generation

This function does the work required for each generation:

1. Check to see if the list is sorted (and sort it if need be)

2. Perform crossover amongst the cells

3. Throw in some cosmic mutation

In most part, other methods are called to carry these out, this allows the behaviour to be easily
modified by extending classes. To add extra functionality (for example storing cells to disk, recording
statisitics, etc.) this method can be wrapped by an extending one. This method is called by the
controlling program.

public void generation() {

if (!sorted) {

sortCellList();

}

crossover();

int s = cells.size();

for (int i=0; i<s; i++) {

if (random() <= cosmicRayFreq) {

((Cell)(cells.get(i))).mutate();

}

}

clearConvergence();

}

B.1.4 sortCellList

This method is an internal one that sorts the list according to the fitness function. It does this by
creating a new list, and stepping through and inserting each object into the correct place in the new
list. The list should be ordered from highest to lowest.

protected void sortCellList() {

ArrayList tempCells = new ArrayList(cells.size());

int top,bot,cent;

int s = cells.size();

bot = 0;

top = 0;

cent = 0;

for (int i=0; i<s; i++) {

top = i;

Cell tempCell = (Cell)cells.remove(0);
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double f = fitness(tempCell);

if ((i==0) || (fitness((Cell)tempCells.get(i-1))>=f))

tempCells.add(tempCell);

else {

if (fitness((Cell)tempCells.get(0))<=f)

tempCells.add(0,tempCell);

else {

int insPoint=0;

for (int j=0; j<i; j++) {

if (fitness((Cell)tempCells.get(j)) < f) {

insPoint = j;

j=i;

}

}

tempCells.add(insPoint, tempCell);

}

}

}

cells = tempCells;

}

B.1.5 fitness (Abstract)

This is an abstract method that takes a Cell and returns a real number representing the fitness value
of the cell. The higher the number, the more fit the cell is. This is the main domain-specific part of
the program.

public abstract double fitness(Cell c);

B.1.6 crossover

This method performs the selection and crossover procedure. As implemented here, it simply selects
twice the number of cells from the top of the list (i.e the high fitness ones) as it wants to produce
(from crossoverRate) and randomly does crossover on pairs. These new ones are then placed at the
bottom of the list, replacing the low fitness ones.

This method needs to be overridden or wrapped if more complex crossover selection or operations
are wanted.

public void crossover() {

ArrayList parentsList = new ArrayList(crossoverRate*2);

ArrayList childrenList = new ArrayList(crossoverRate);

int s = crossoverRate*2;

for (int i=0; i<s;i++)

parentsList.add(cells.get(i));

for (int i=0; i<crossoverRate; i++) {

int c = (int)random(s);

childrenList.add(((Cell)parentsList.get(c)).copy(getNextID()));

((Cell)childrenList.get(i)).crossover((Cell)parentsList.get((int)random(s)));

}

Now that we have built up a list of new organisims, we need to insert them into the environment. For
this implementation, they go at the end of the list.

int t=cells.size()-crossoverRate;

for (int i=0; i<crossoverRate; i++) {
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cells.set(i+t,childrenList.get(i));

}

sorted = false;

}

We need a couple of random number generators to support this.

B.1.7 random (zero arguments)

This returns a double in the range 0 <= x < 1

public double random() {

return Math.random();

}

B.1.8 random (one argument)

This returns a double in the range 0 <= x < r. Note that this is simply the random() (Section B.1.7)
multiplied, so there is no precision gained over it.

public double random(double r) {

return random()*r;

}

B.1.9 getNextID

This fetches the next unique ID string for an organism, returns it, and increases the ID counter.
A more efficient method of doing this should be found. This method ignores wraparound, but if
ID LENGTH is set sufficiently high (say, 10) then this shouldn’t be a problem.

public String getNextID() {

if (lastID!=null) {

lastID[ID_LENGTH-1]++;

boolean carry=false;

for (int i=ID_LENGTH-1; i>=0; i--) {

if (carry)

lastID[i]++;

if (lastID[i]<=’Z’)

carry = false;

else {

lastID[i]=’A’;

carry = true;

}

}

} else {

lastID = new char[ID_LENGTH];

for (int i=0; i<ID_LENGTH; i++)

lastID[i] = ’A’;

}

return new String(lastID);

}
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B.1.10 getFitnesses

This method returns an array that contains all the fitness values of the system as it is at the moment.
Because the sorting happens at the start of the generation, if sorted values are wanted, then specify
‘true’. If it doesn’t matter, specify false.

public double[] getFitnesses(boolean sort) {

if (sort && !sorted) {

sortCellList();

}

double [] foo = new double[cells.size()];

for (int i=0; i<foo.length; i++) {

foo[i] = fitness((Cell)cells.get(i));

}

return foo;

}

B.1.11 getCellConvergence (abstract)

Convergence is a measure of how alike one cell is to all the others. The simplest way to calculate is
to build a frequency table of what value is found in what location. Then, the Genotype of the cell
in question is compared to that table, and for each location in the genotype, the proportion of the
population that share it is calculated. The mean of these is then taken, and this is the convergence
of the cell.

There are two versions, for convenience. One gets the convergence of an arbitrary cell, the other
gets the other gets the convergence of a cell in the environment, specified by a number, and an option
to ensure the cell list is sorted first.

public abstract double getCellConvergence(Cell c);

public double getCellConvergence(int n, boolean sort) {

if (!sorted && sort) {

sortCellList();

}

return getCellConvergence((Cell)cells.get(n));

}

B.1.12 getPopnConvergence

This returns the average convergence level across the whole population. This is done by calculating
the convergence for every organism and taking the mean. As it is here, this will work, but it may be
a good idea to override it with a more domain-specific version which will likely be able to squeeze out
a bit more efficiency.

public double getPopnConvergence() {

int s = cells.size();

double c = 0.0;

for (int i=0; i<s; i++) {

c += getCellConvergence((Cell)cells.get(i));

}

return s==0 ? 0 : c/s;

}
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B.1.13 clearConvergence (abstract)

Because it would be computationally expensive to calculate the lookup table for every cell we want
to test, it is good to cache it, and reset it every generation. This method is called each generation to
do the reset.

public abstract void clearConvergence();

For good measure, we have a few accessors and modifiers. These can be used to alter the behaviour
of the system as it is running.

B.1.14 getCosmicRayFreq

Returns the frequency of cosmic ray hits.

public double getCosmicRayFreq() {

return cosmicRayFreq;

}

B.1.15 setCosmicRayFreq

Sets the cosmic ray level of the universe.

public void setCosmicRayFreq(double c) {

cosmicRayFreq = c;

}

B.1.16 getCrossoverRate

Gets the crossover rate.

public int getCrossoverRate() {

return crossoverRate;

}

B.1.17 setCrossoverRate

Sets the crossover rate.

public void setCrossoverRate(int c) {

crossoverRate = c;

}

B.1.18 getCell

This retrieves a cell from the environment. If the method is given a “true” argument, it ensures that
the list is sorted first.

public Cell getCell(int c, boolean sort) {

if (sort && !sorted) {

sortCellList();

}

return (Cell)cells.get(c);

}
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B.1.19 setCell

This allows a cell to be inserted into the environment, replacing what was there before. It has three
arguments: index, Cell to insert, and a boolean stating whether the list should be sorted first.

public void setCell(int i, Cell c, boolean sort) {

if (sort && !sorted) {

sortCellList();

}

cells.set(i,c);

}

}
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B.2 Cell class (abstract)

This class loosely represents a cell, in that it holds a genome. Operations such as the storing of non-
genetic information (e.g. parent information) and storage of the fitness function (so that it doesn’t
need to be calculated again if nothing has changed) are done here. Mutation and crossover are done
in anything extending this.

import java.util.*;

public abstract class Cell {

• Genome DNA
Stores the “genetic material” of the cell.

• String ID
Stores the identifier for this cell, used to identify it uniquely.

• ArrayList parents
Stores a list provided by the environment that is used to build a “family history” of cells.

• double fitness
The fitness function of the cell, as provided by the environment. This is used to avoid unnec-
essary recalculation.

• boolean dirtyBit
True if the fitness is invalid (e.g. the genome has been altered)

Genome DNA;

String ID;

ArrayList parents;

double fitness;

boolean dirtyBit = true;

B.2.1 Constructor

The constructor for this can accept a Geneome object, and use that. There is also a constructor, to
be overridden, that accepts a size. Both of these accept a String that represents the unique identifier,
provided by the environment, and an ArrayList that is a list of parents.

protected Cell() {}

protected Cell(String i, ArrayList p) {

ID = i;

parents = p;

}

public Cell(String i, ArrayList p, Genome g) {

this(i,p);

DNA = g;

}

protected Cell(String i, ArrayList p, double f,

boolean d, Genome g) {

this(i,p,g);

fitness = f;

dirtyBit = d;

}
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B.2.2 mutate (abstract)

This method, which must be implemented by the extending class, is called when this cell has been
chosen to be mutated. As what it does is dependant on the structure of the genome data itself, it has
to be left to a class which knows about that. Should make dirtyBit true.

public abstract void mutate();

B.2.3 crossover (abstract)

This method accepts an argument of another Cell object, and alters itself to be the result of crossover
between itself and the Cell provided. Should make dirtyBit true.

public abstract void crossover(Cell c);

B.2.4 getID

This method returns the ID of this cell. The ID is whatever it was told by the constructor, or was set
by the setID() method (Section B.2.5).

public String getID() {

return ID;

}

B.2.5 setID

This sets the ID, replacing whatever was set by the constructor.

public void setID(String i) {

ID = i;

}

B.2.6 getParents

This gets the list of parents of the cell.

public ArrayList getParents() {

return parents;

}

B.2.7 setParents

This replaces the existing list of parents with the one supplied.

public void setParents(ArrayList a) {

parents = a;

}

B.2.8 getGenome

This retreives the genome of the cell.

public Genome getGenome() {

return DNA;

}
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B.2.9 setFitness

This sets the fitness value of the cell.

public void setFitness(double f) {

fitness = f;

dirtyBit = false;

}

B.2.10 getFitness

Retrieves the fitness value.

public double getFitness() {

return fitness;

}

B.2.11 dirty

Returns the status of dirtyBit, indicating whether or not the fitness value is to be trusted.

public boolean dirty() {

return dirtyBit;

}

B.2.12 makeDirty

Makes a cell “dirty”, by setting dirtyBit.

public void makeDirty() {

dirtyBit = true;

}

B.2.13 makeClean

Makes a cell “clean”, by resetting the dirtyBit.

public void makeClean() {

dirtyBit = false;

}

B.2.14 copy (abstract)

This duplicates a cell, creating new instances of everything contained in it. It gives it the ID spec-
ified. Note that things like the parent list are kept intact, and may need to be altered depend-
ing on the application. It must be overridden, and look something like: return new Cell(newID,

parents.clone(), fitness, dirtyBit, DNA.copy()); except with Cell replaced by whatever the
subclass is called.

public abstract Cell copy(String newID);

}
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B.3 Genome class (abstract)

This class is quite simple, it is the abstract level of interface to a gene. As much of this is implementa-
tion specific, there is very little required here, and some casting will have to be done by the program
that uses it to ensure that the correct functions are avalible.

public abstract class Genome {

The data fields global to all Gene extenders go here.

• int size
Defines the number of elements in the genome. What this means is really up to the extending
class.

int size;

B.3.1 Constructor

The ever-present default constructor.

public Genome(){}

The constructor accepts a size, and stores it. It is very likely that this will be overridden in order to
actually set up the contents of the genotype.

public Genome(int s) {

size = s;

}

B.3.2 randomise (abstract)

The method randomise() should make the sequence random.

public abstract void randomise();

B.3.3 copy (abstract)

This does a deep copy of this object.

public abstract Genome copy();

}
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Appendix C

Source Code For Application
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C.1 Test Program 2

This code is an extension of the first test program (which isn’t included in this report, as its function-
ality is a subset of this one. The problem domain is the same, however this version allows multiple
populations to be created.

The multiple population system is handled with an extension to the syntax. The environment
variable ‘defpop’ specifies the default population. Any command prefixed with n: will operation on
population n, for example: 3:create will perform the create operation on population 3. The variable
‘numpops’ defines the upper bound of this number.

This also supports ranges (e.g. 2-4:create. A wildcard is also allowed, e.g *:create.
Variables that have a meaning local to the population are affected by the prefix (for example

‘crossrate’), others are independent of it (‘fitcap’).

import java.io.*;

import java.util.*;

import java.text.*;

public class Test2 {

int varDispfreq;

double varConvCap;

int varConvCheck;

double varFitCap;

int varFitCheck;

int varNumPop = 1;

int varDefPop;

int varMigRate;

int varMigFreq;

int varMigPolicy;

int numGens;

ArrayList environments = new ArrayList();

Hashtable cellStorage;

static final String startFile = "startup.ga";

C.1.1 main

This is the entry point into the program. Initially, it creates the instances of the programs, and then
calles the command line interface.

public static void main(String[] args) {

First we load startup.ga if it exists, then go to the command line. The loading must be done in a
slightly roundabout way, because loadScript expects a list of options as its input.

Test2 foo = new Test2();

ArrayList f = new ArrayList();

f.add(startFile);

foo.loadScript(f,System.out);

foo.doCommandLine();

}

C.1.2 Constructor

This constructor is called when the basic object is created, and is used to set up stuff that should be
applied at startup.
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public Test2() {

varNumPop = 1;

resizePopns();

cellStorage = new Hashtable();

}

C.1.3 doCommandLine

This is a basic command line interface to do things like set the GA system parameters, start it running
and extract statistics. It will likely be replaced or supplimented by a more flexible system eventually.

public void doCommandLine() {

boolean quit = false;

String cmdLine="";

String lastCmd="";

BufferedReader input =

new BufferedReader(new InputStreamReader(System.in));

while (!quit) {

System.out.print("GA> ");

try {

cmdLine = input.readLine();

} catch (IOException e) {

System.out.println("Input error: "+e.getLocalizedMessage());

}

// A (mis)feature in Java means that a readLine() returns

// null if ctrl-D is pressed.

if (cmdLine == null) {

System.out.println("exit");

cmdLine = "exit";

}

For quick repeating of commands.

if (cmdLine.equals("!!")) {

cmdLine = lastCmd;

}

Parse the command line and call the relevant methods.

int res = parseCmdLine(cmdLine,System.out);

if (res == -1) {

quit = true;

} else if (res == 1) {

System.out.println("Error: No such command: "+cmdLine);

}

lastCmd = cmdLine;

}

}

C.1.4 parseCmdLine

This takes a string and parses it as though it is a command line. This allows things like recursive
loading of scripts to be implemented.

Return values are the same as for dispatch (Section C.1.6), with -1 meaning to end the program,
0 meaning success, and 1 meaning there was an error.
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public int parseCmdLine(String cmdLine, PrintStream defStream) {

To parse the line we need a tokenizer that knows about ‘¿’.

StringTokenizer st = new StringTokenizer(cmdLine," \t\n\r\f>");

If there are no tokens, then just ignore.

if (st.countTokens() != 0) {

Now wander through and see if if we need redirection.

PrintStream output = defStream;

int n;

if ((n = cmdLine.indexOf(’>’)) != -1) {

If this is followed by another one, we need to append, not overwrite.

boolean append = false;

if (cmdLine.charAt(n+1) == ’>’) {

n++;

append = true;

}

try {

output =

new PrintStream(new FileOutputStream(cmdLine.

substring(n+1).

trim(),append));

} catch (IOException e) {

If there was a problem, we say, and then just carry on as though nothing had happened (output goes
to System.out)

defStream.println("IO Error: "+e.getLocalizedMessage());

}

We also need to take the left hand side and make it the command.

cmdLine = cmdLine.substring(0,n);

}

ArrayList envs = new ArrayList();

Now look at that command and see if it has any sort of range specifier. If it does, build a list of the
populations to cover.

if ((n = cmdLine.indexOf(’:’)) != -1) {

try {

String range = cmdLine.substring(0,n).trim();

cmdLine = cmdLine.substring(n+1);

if (range.length() == 0) {

defStream.println("‘:’ without numbers doesn’t make "+

"sense.");

return 0;

}

if (range.equals("*")) {

// All values

for (int i=0; i<environments.size(); i++) {

envs.add(environments.get(i));
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}

} else {

if ((n = range.indexOf(’-’)) != -1) {

// A range

int num1 = Integer.parseInt(range.substring(0,n));

int num2 = Integer.parseInt(range.substring(n+1));

if ((num1<0) ||

(num2>=environments.size()) ||

(num1>=num2)) {

defStream.println("Invalid environment "+

"range specified.");

}

for (int i=num1; i<=num2; i++) {

envs.add(environments.get(i));

}

} else {

// A single value

int envNum = Integer.parseInt(range);

if ((envNum>=environments.size())||(envNum<0)) {

defStream.println("Invalid environment "+

"specified.");

return 0;

}

envs.add(environments.get(Integer.

parseInt(range)));

}

}

} catch (NumberFormatException e) {

defStream.println("Environment numbering error: "+

e.getLocalizedMessage());

return 0;

}

} else

envs.add(environments.get(varDefPop));

if (envs.size() == 0) {

defStream.println("No valid environments specified.");

return 0;

}

Now we need to take the first token, which is the actual command.

st = new StringTokenizer(cmdLine," \t\n\r\f>");

String cmd = st.nextToken();

Now figure out its options, put into an ArrayList containing strings.

ArrayList options = new ArrayList();

Add a dummy entry that will have the environment placed into it.

options.add(null);

while (st.hasMoreTokens())

options.add(st.nextToken());

if (cmd.equals("@load")) {

Exception e = loadScript(options,defStream);
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if (e != null) {

defStream.println("@load: Error: "+

e.getLocalizedMessage());

}

} else {

int res = 0;

for (int i=0;i<envs.size() && 0 == res; i++) {

options.set(0,envs.get(i));

res = dispatch(cmd,output,options);

}

return res;

}

}

There was no input, or it was internal and didn’t fail.

return 0;

}

C.1.5 loadScript

This loads a script file by calling parseCmdLine with each line in the file. Returns an exception if
there is an error, otherwise null.

public Exception loadScript(ArrayList opts, PrintStream defStream) {

if (opts.size() == 1) {

try {

BufferedReader input =

new BufferedReader(new FileReader((String)opts.get(0)));

String s;

while ((s=input.readLine()) != null) {

if ((s.length() != 0) && (s.charAt(0) != ’#’)) {

int res=parseCmdLine(s,defStream);

if (res == -1) {

System.exit(0);

} else if (res == 1) {

defStream.println("Error: invalid command: "+s);

}

}

}

} catch (IOException e) {

return e;

}

} else {

defStream.println("Error: @load requires a filename to load.");

}

return null;

}

C.1.6 dispatch

This handles the execution of commands. It is to allow an easy way to handle things like scripting
from a file as well as interactive commands. Returns -1 to finish the program, 0 for success, 1 for
invalid command.
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public int dispatch(String cmd, PrintStream output, ArrayList options) {

if (cmd.equals("set"))

cmdSet(output,options);

else if (cmd.equals("create"))

cmdCreate(output,options);

else if (cmd.equals("destroy"))

cmdDestroy(output,options);

else if (cmd.equals("run"))

cmdRun(output,options);

else if (cmd.equals("display"))

cmdDisplay(output,options);

else if (cmd.equals("stats"))

cmdStats(output,options);

else if (cmd.equals("extract"))

cmdExtract(output,options);

else if (cmd.equals("replace"))

cmdReplace(output,options);

else if (cmd.equals("reset"))

cmdReset(output,options);

else if (cmd.equals("quit") ||

cmd.equals("q") ||

cmd.equals("exit"))

return -1;

else

return 1;

return 0;

}

C.1.7 cmdSet

This implements the set command, which sets parameters that affect the functioning of the system.
This probably should be done in a better way, perhaps a hashtable to allow arbitrary variables to be
created and used. Maybe another time. Variables are:

• popn
The number of organisims stored. Cannot be changed in an active system.

• cosmic
Cosmic ray frequency, as defined in the Environment class (Section B.1)

• crossrate
The crossover rate.

It is important to note that the Environment class does not query us for the values, so any relevant
changes must be pushed through to it.

public void cmdSet(PrintStream o, ArrayList opts) {

Initially, we’ll copy the environment wrapper into a more convenient variable.

EnvWrapperT2 env = (EnvWrapperT2)opts.get(0);

If there were no parameters, we list everything we know about.

if (opts.size() == 1) {

o.println("set popn "+env.getVarPopn());

o.println("set cosmic "+env.getVarCosmic());
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o.println("set crossrate "+env.getVarCrossrate());

o.println("set dispfreq "+varDispfreq);

o.println("set convcap "+varConvCap);

o.println("set convcheck "+varConvCheck);

o.println("set fitcap "+varFitCap);

o.println("set fitcheck "+varFitCheck);

o.println("set defpop "+varDefPop);

o.println("set numpop "+varNumPop);

o.println("set migrate "+varMigRate);

o.println("set migfreq "+varMigFreq);

o.println("set migpolicy "+varMigPolicy);

} else if (opts.size() == 2) {

If there was only one parameter, we list it.

if ("popn".equals((String)opts.get(1))) {

o.println("set popn "+env.getVarPopn());

} else if ("cosmic".equals((String)opts.get(1))) {

o.println("set cosmic "+env.getVarCosmic());

} else if ("crossrate".equals((String)opts.get(1))) {

o.println("set crossrate "+env.getVarCrossrate());

} else if ("dispfreq".equals((String)opts.get(1))) {

o.println("set dispfreq "+varDispfreq);

} else if ("convcap".equals((String)opts.get(1))) {

o.println("set convcap "+varConvCap);

} else if ("convcheck".equals((String)opts.get(1))) {

o.println("set convcheck "+varConvCheck);

} else if ("fitcap".equals((String)opts.get(1))) {

o.println("set fitcap "+varFitCap);

} else if ("fitcheck".equals((String)opts.get(1))) {

o.println("set fitcheck "+varFitCheck);

} else if ("defpop".equals((String)opts.get(1))) {

o.println("set defpop "+varDefPop);

} else if ("numpop".equals((String)opts.get(1))) {

o.println("set numpop "+varNumPop);

} else if ("migrate".equals((String)opts.get(1))) {

o.println("set migrate "+varMigRate);

} else if ("migfreq".equals((String)opts.get(1))) {

o.println("set migfreq "+varMigFreq);

} else if ("migpolicy".equals((String)opts.get(1))) {

o.println("set migpolicy "+varMigPolicy);

} else o.println("Error: no such variable.");

} else {

However, as there is more than one parameter, we set the variable. We may also need to push this
value to the EnvWrapperT2 class.

try {

if ("popn".equals((String)opts.get(1))) {

if (env.getEnv() == null) {

env.setVarPopn(Integer.parseInt((String)opts.get(2)));

} else {

o.println("Error: value cannot be changed on an "+

"existing system");

}

} else if ("cosmic".equals((String)opts.get(1))) {
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env.setVarCosmic(Double.parseDouble((String)opts.get(2)));

if (env.getEnv() != null) {

env.getEnv().setCosmicRayFreq(env.getVarCosmic());

}

} else if ("crossrate".equals((String)opts.get(1))) {

env.setVarCrossrate(Integer.parseInt((String)opts.

get(2)));

if (env.getEnv() != null) {

env.getEnv().setCrossoverRate(env.getVarCrossrate());

}

} else if ("dispfreq".equals((String)opts.get(1))) {

varDispfreq = Integer.parseInt((String)opts.get(2));

} else if ("convcap".equals((String)opts.get(1))) {

varConvCap = Double.parseDouble((String)opts.get(2));

} else if ("convcheck".equals((String)opts.get(1))) {

varConvCheck = Integer.parseInt((String)opts.get(2));

} else if ("fitcap".equals((String)opts.get(1))) {

varFitCap = Double.parseDouble((String)opts.get(2));

} else if ("fitcheck".equals((String)opts.get(1))) {

varFitCheck = Integer.parseInt((String)opts.get(2));

} else if ("defpop".equals((String)opts.get(1))) {

varDefPop = Integer.parseInt((String)opts.get(2));

} else if ("numpop".equals((String)opts.get(1))) {

int v = Integer.parseInt((String)opts.get(2));

if (v<0) {

o.println("Error: numpop can’t be set <0.");

} else {

varNumPop = Integer.parseInt((String)opts.get(2));

resizePopns();

}

} else if ("migrate".equals((String)opts.get(1))) {

varMigRate = Integer.parseInt((String)opts.get(2));

} else if ("migfreq".equals((String)opts.get(1))) {

varMigFreq = Integer.parseInt((String)opts.get(2));

} else if ("migpolicy".equals((String)opts.get(1))) {

varMigPolicy = Integer.parseInt((String)opts.get(2));

} else o.println("Error: no such variable.");

} catch (NumberFormatException e) {

o.println("Error: invalid value: "+e.getLocalizedMessage());

}

}

}

C.1.8 resizePopns

This ensures that the size of the environments ArrayList matches the value of varNumPop.

public void resizePopns() {

if (varNumPop < environments.size()) {

for (int i=environments.size(); i>=varNumPop; i--) {

environments.remove(i);

}

} else if (varNumPop > environments.size()) {

for (int i=environments.size(); i<varNumPop; i++)

environments.add(new EnvWrapperT2());
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}

environments.trimToSize();

}

C.1.9 cmdCreate

This creates an instance of the EnvWrapperT2 class with an EnvironmentT2 inside it, and starts
it with the appropriate values, according to the variables that are set. This starts the population with
a set of randomised organisms.

public void cmdCreate(PrintStream o, ArrayList opts) {

EnvWrapperT2 env = (EnvWrapperT2)opts.get(0);

env.create();

}

C.1.10 cmdDestroy

This removes the environment from memory, allowing a new one to be created.

public void cmdDestroy(PrintStream o, ArrayList opts) {

((EnvWrapperT2)opts.get(0)).setEnv(null);

}

C.1.11 cmdRun

This runs the system for a specified number of generations. Statistics are displayed every so often,
determined by the varDispfreq variable.

This method pretty much ignores the list of environments, and it operates on all environments
that are set up. A way to activate and deactivate enviroments will be added if necessary.

NEVER EVER call the run command with a range of environments, it will be executed several
times, and this isn’t a good thing.

public void cmdRun(PrintStream o, ArrayList opts) {

boolean done = false;

First check to ensure that at least one environment has been created in order to run. At the same
time, we’ll plug them into an ArrayList for later.

ArrayList envsToRun = new ArrayList();

Hashtable envNum = new Hashtable();

EnvWrapperT2 e;

for (int i=0; i<environments.size(); i++) {

if ((e=(EnvWrapperT2)environments.get(i)).getEnv() != null) {

envsToRun.add(e);

envNum.put(((EnvWrapperT2)e).getEnv(),new Integer(i));

}

}

if (envsToRun.size() == 0) {

o.println("Error: A system needs to be created before "+

"it can be run.");

return;

}

Have we been supplied with a number of generations to go for?
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if (opts.size() != 2) {

o.println("Error: A number of generations to run must be given.");

return;

}

Work out how many generations we want to run for. (It’s not really too hard)

int wantedGens;

try {

wantedGens = Integer.parseInt((String)opts.get(1));

} catch (NumberFormatException ex) {

o.println("Error: invalid number of generations: "+

ex.getLocalizedMessage());

return;

}

for (int i=0; (i<wantedGens && !done); i++) {

Iterator envIt = envsToRun.iterator();

if ((varMigRate != 0) &&

(varMigFreq != 0) &&

(envsToRun.size()>1)) {

if (numGens % varMigFreq == 0) {

First we need to split off depending on migration policy. If the variable varMigPolicy is 0, then we
do a simple form of migration, where the best from each population are “cloned”, and sent off to all
the other ones.

If varMigPolicy is 1, then we emulate a biological system, where the organisms aren’t actually
cloned, but are moved. This actually alters quite a bit, in the original method, if the migration rate
was two and there were three populations, then each population would get six new organisms. In this
variation it only gets two. They are spread out as much as is possible, also. The actual code for this
starts a few blocks down.

int numPops=envsToRun.size();

if (varMigPolicy == 0) {

Here we need to do basic migration. Basically we pull the best few from each population, put them
into an array, and then go through and insert each one into all the other Environments.

Cell[][] migrants = new Cell[numPops][varMigRate];

First up we go through the population and take the best varmigRate populations, and insert them
into the array.

for (int en=0;en<numPops;en++) {

EnvWrapperT2 envw =

(EnvWrapperT2)envsToRun.get(en);

for (int f=0;f<varMigRate;f++)

migrants[en][f] =

envw.getEnv().getCell(f,true).copy("");

}

Now that is done, we go through each array and insert everything from it into the bottom end of each
environment (except the one it came from).

The loops get a little messy here. The first one steps over each population telling us what we are
inserting to, the second one steps over each population in the array telling us part of what we are
taking out, and the third steps over the amount from each population.
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for (int en=0;en<numPops;en++) {

EnvWrapperT2 envw =

(EnvWrapperT2)envsToRun.get(en);

int insertP = envw.getVarPopn()-1;

for (int f=0;f<numPops;f++)

if (en!=f)

for (int g=0;g<varMigRate;g++)

envw.getEnv().

setCell(insertP--,

migrants[f][g].copy(""),true);

}

} else if (varMigPolicy == 1) {

Here we do the more biologically-inspired method. In this, all the best ones are collected up, and
then the contents of that array is spread out amongst all the populations (except the one it originated
from).

Cell[] migrants = new Cell[varMigRate*numPops];

int arrayPtr=0;

for (int p=0; p<numPops; p++) {

EnvWrapperT2 envw =

(EnvWrapperT2)envsToRun.get(p);

for (int org=0;org<varMigRate;org++) {

migrants[arrayPtr++] =

envw.getEnv().getCell(org,true).copy("");

}

}

Now we go and place each organism in this array into another population, taking care that it isn’t
inserted into the one that it came from. Note that this inserts from the top which effectivly removes
the organism that left.

int destPop = 0;

arrayPtr = 0;

int[] popInsPt = new int[numPops];

for (int j=0;j<numPops;j++) {popInsPt[j]=0;}

while (arrayPtr<migrants.length) {

if ((arrayPtr<destPop*varMigRate) ||

(arrayPtr>=(destPop+1)*varMigRate)) {

EnvWrapperT2 envw =

(EnvWrapperT2)envsToRun.get(destPop);

envw.getEnv().

setCell(popInsPt[destPop]++,

migrants[arrayPtr++],false);

}

destPop=(destPop+1)%numPops;

}

}

}

}

Here each environment is stepped through, and its generation() method is called. Other checks, such
as checking the various limits and whether to display are done after that.

while (envIt.hasNext()) {

Environment env = ((EnvWrapperT2)envIt.next()).getEnv();
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env.generation();

if ((varConvCheck != 0) &&

(numGens % varConvCheck == 0) &&

(env.getPopnConvergence() >= varConvCap))

done = true;

double avg = 0.0;

double max=-Double.MAX_VALUE;

if (varFitCheck != 0)

if (numGens % varFitCheck == 0) {

double [] stats = env.getFitnesses(true);

double sum = 0.0;

for (int j=0; j<stats.length; j++) {

sum += stats[j];

if (stats[j]>max)

max=stats[j];

}

avg = sum / stats.length;

if (avg >= varFitCap)

done = true;

}

if (varDispfreq != 0)

if ((numGens % varDispfreq == 0) || done) {

if (avg == 0.0) {

double [] stats = env.getFitnesses(true);

double sum = 0.0;

for (int j=0; j<stats.length; j++) {

sum += stats[j];

if (stats[j]>max)

max=stats[j];

}

avg = sum / stats.length;

}

int number=((Integer)envNum.get(env)).intValue();

o.println(number+"\t"+

numGens+"\t"+

avg+"\t"+

max+"\t"+

toDP(5,env.getPopnConvergence()));

}

}

numGens++;

}

}

C.1.12 cmdExtract

This method allows a representation of an organism to be displayed.

public void cmdDisplay(PrintStream o, ArrayList opts) {

if (opts.size() == 1) {

o.println("Error: a list of organisms must be specified.");

return;

}

EnvWrapperT2 wrapper = (EnvWrapperT2)opts.get(0);

EnvironmentT2 env = wrapper.getEnv();
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if (env == null) {

o.println("Error: a system needs to be created first.");

return;

}

for (int i=1; i<opts.size(); i++) {

int cellNum;

try {

cellNum = Integer.parseInt((String)opts.get(i));

} catch (NumberFormatException e) {

o.println("Error: not a number: "+e.getLocalizedMessage());

continue;

}

if (cellNum > wrapper.getVarPopn()) {

o.println("Error: there is no such cell "+cellNum);

continue;

}

CellT2 cell = (CellT2)env.getCell(cellNum,false);

GenomeT2 gen = (GenomeT2)cell.getGenome();

byte[] geneString = gen.getGene();

o.println("ID: "+cell.getID());

o.println("Convergence: "+env.getCellConvergence(cell));

o.println("Parents:");

ArrayList p = cell.getParents();

for (int j=0; j<p.size(); j++)

o.println(" > "+(String)p.get(j));

for (int j=0; j<geneString.length; j++)

o.print(byteToHex(geneString[j])+" ");

o.println();

}

}

C.1.13 cmdStats

This displays a detailed bunch of statistics regarding the state of of the system and the cells in it.

public void cmdStats(PrintStream o, ArrayList opts) {

Environment env = ((EnvWrapperT2)opts.get(0)).getEnv();

if (env == null) {

o.println("Error: the environment must be created first.");

return;

}

o.print(numGens+" {");

double[] stats = env.getFitnesses(true);

double sum = 0.0;

for (int i=0; i<stats.length; i++) {

o.print(" "+stats[i]+","+toDP(5,env.getCellConvergence(i,false)));

sum += stats[i];

}

o.println(" } "+sum/stats.length+" "+

toDP(5,env.getPopnConvergence()));

}
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C.1.14 cmdExtract

This command allows individual Cells to be copied from the current environment, and placed in a
global pool. The first option given is the index of the genome to extract, starting from zero. For
conveniences sake, negative indexes work from the other end of the Environment, so that 0 is the
best, and -1 is the worst. The identifier used to store them is any string, and a hashtable is the storage
method.

public void cmdExtract(PrintStream o, ArrayList opts) {

Environment env = ((EnvWrapperT2)opts.get(0)).getEnv();

if (env == null) {

o.println("Error: the environment must be created first.");

return;

}

if (opts.size() != 3) {

o.println("Error: insufficient parameters given.");

return;

}

First work out what cell we want, and make sure it is valid.

int numCells = ((EnvWrapperT2)opts.get(0)).getVarPopn();

int wantedCell;

try {

wantedCell = Integer.parseInt((String)opts.get(1));

} catch (NumberFormatException e) {

o.println("Error: invalid cell number: "+e.getLocalizedMessage());

return;

}

if (wantedCell < 0)

wantedCell = numCells+wantedCell;

if (wantedCell >= numCells) {

o.println("Error: cell number out of range: "+wantedCell);

return;

}

Now get the key that it is going to be stored with.

String key = (String)opts.get(2);

Now do it all...(note that we’re not caring about family trees here, so don’t bother with IDs.)

Cell c = (env.getCell(wantedCell,true)).copy("");

cellStorage.put(key,c);

}

C.1.15 cmdReplace

This is the counterpart to cmdExtract. It takes a cell from the storage Hashtable and puts it into
the Environment. All the arguments are as cmdExtract.

public void cmdReplace(PrintStream o, ArrayList opts) {

Environment env = ((EnvWrapperT2)opts.get(0)).getEnv();

if (env == null) {

o.println("Error: the environment must be created first.");

return;

}
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if (opts.size() != 3) {

o.println("Error: insufficient parameters given.");

return;

}

Similar to above, make sure the destination is valid.

int numCells = ((EnvWrapperT2)opts.get(0)).getVarPopn();

int destCell;

try {

destCell = Integer.parseInt((String)opts.get(1));

} catch (NumberFormatException e) {

o.println("Error: invalid cell number: "+e.getLocalizedMessage());

return;

}

if (destCell < 0)

destCell = numCells+destCell;

if (destCell >= numCells) {

o.println("Error: cell number out of range: "+destCell);

return;

}

Now get the key to retrieve it with.

String key = (String)opts.get(2);

Now copy the cell in storage, and insert it into the environment.

Cell c = (Cell)cellStorage.get(key);

if (c==null) {

o.println("Error: no cell in storage with key "+key);

return;

}

env.setCell(destCell,c.copy(""),true);

}

C.1.16 cmdReset

Anything that needs resetting between runs or whatever can be done here.

public void cmdReset(PrintStream o, ArrayList opts) {

numGens = 0;

}

C.1.17 byteToHex

This takes a byte, and outputs a two-character string that is that byte in hexadecimal.

public static String byteToHex(byte b) {

char c;

String out;

char[] foo = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,

’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’};

c = foo[b & 15];

b = (byte)((b & 240) >> 4);

out = "" + foo[b] + c;

return out;

}
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C.1.18 toDP

Java has an annoying bug when it comes to dealing with the rounding of numbers for display, in that
they will end up a little bit out quite a few DP along, making it display things like 0.15625000000000006
insead of 0.15625. This function rounds to a specified number of DP in order to get rid of this, but
still hopefully give the right number (so 0.47499999999 doesn’t become 0.47 when it should be 0.48
(because it really should be 0.475).

public static String toDP(int dp, double n) {

String format1="0.";

String format2="0.";

for (int i=0;i<dp+4;i++)

format1+="#";

for (int i=0;i<dp;i++)

format2+="#";

DecimalFormat df1 = new DecimalFormat(format1);

DecimalFormat df2 = new DecimalFormat(format2);

return df2.format(Double.parseDouble(df1.format(n)));

}

}
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C.2 EnvWrapperT2

This class provides a wrapper for the EnvironmentT2 class, in order to store settings that are
specific to the class. It provides accessors and modifiers necessary to move the information around.
Most validity checking should be done by whatever is setting the values.

public class EnvWrapperT2 {

private EnvironmentT2 env;

private double varCosmic;

private int varCrossrate;

private int varPopn;

public void setEnv(EnvironmentT2 e) { env = e; }

public EnvironmentT2 getEnv() { return env; }

public void setVarCosmic(double c) { varCosmic = c; }

public double getVarCosmic() { return varCosmic; }

public void setVarCrossrate(int c) { varCrossrate = c; }

public int getVarCrossrate() { return varCrossrate; }

public void setVarPopn(int p) { varPopn = p; }

public int getVarPopn() { return varPopn; }

public void create() {

env = new EnvironmentT2(varPopn, varCosmic, varCrossrate);

}

}
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C.3 EnvironmentT2 class

This provides the environment class, specifically aimed at this task. It also keeps various statistics on
the system.

import java.util.*;

public class EnvironmentT2 extends Environment {

int[][] convTable;

C.3.1 Constructor

This simply takes the three values and passes them to the superclass to deal with.

public EnvironmentT2(int s, double r, int c) {

super(s,r,c);

}

C.3.2 initCells

Here the cells are initialised and inserted into the ArrayList.

protected void initCells(int size) {

cells = new ArrayList(s);

for (int i=0; i<s; i++) {

cells.add(new CellT2(getNextID(),new ArrayList(),0.0,

true,new GenomeT2()));

}

}

C.3.3 generation

This ensures that the fitness of all the organisms is recalculated at the start of a generation.

public void generation() {

for (int i=0; i<cells.size(); i++) {

((Cell)cells.get(i)).makeDirty();

}

super.generation();

}

C.3.4 fitness

The most important method for this system is the one that determines the fitness. A lot of the
description here is repeated from the description in Section C.1, however much is still in addition to
it.

The fitness method is passed a Cell (Section B.2), from that it retreives the GenomeT2 (Section
C.5). Then, the byte array corresponding to the actual organism is extracted. This is then passed
through a simulation to determine what the fitness should be. The fitness determining test is done
four times, each time starting in a different corner on an integer-graded plane. The starting values for
each test are -5 and 5 in both x and y.1 The fitness for each test is the change in Manhattan distance,
i.e.

M = |x| + |y|

1This means that the starting points used are: (5,5), (-5,-5), (-5,5), (5,-5).
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so if it starts with a high distance, and ends with a low one, that corresponds to a high fitness.
Originally this used random starting points, but this has the problem that sometimes the same

genotype could have a very different fitness value on two different fitness evaluations. It is interesting
to note that it would still evolve the ideal solution, however made the results a little more messy then
they needed to be.

The final fitness is the sum of the fitness of each of the four tests. This is then stored in the cell.
While it is the case that the fitness may be different for every test, it is still used here to provide an
easier way of generating statistics. The generation method will go through and mark all of the cells
as ’dirty’ at the start of each generation to account for this.

public double fitness(Cell c) {

if (!c.dirty()) {

return c.getFitness();

}

byte[] b = ((GenomeT2)c.getGenome()).getGene();

int fit = 0;

int[] xvals = {5,5,-5,-5};

int[] yvals = {5,-5,5,-5};

for (int i=0; i < 4; i++) {

int x = xvals[i];

int y = yvals[i];

int st_dist = Math.abs(x) + Math.abs(y);

for (int j=0; j < 8; j+=2) {

This first part does all the testing in the x direction.

byte test = (byte)((b[j] & 240) >> 4);

byte res = (byte)(b[j] & 15);

if (test <= 4) {test = 0;} else

if ((test > 4) && (test <= 9)) {test = 1;} else

if (test > 9) {test = 2;}

if (res <= 4) {res = 0;} else

if ((res > 4) && (res <= 9)) {res = 1;} else

if (res > 9) {res = 2;}

if ((test == 0) && (x < 0)) {

if (res == 0) {x--;} else

if (res == 1) {x++;}

} else if ((test == 1) && (x > 0)) {

if (res == 0) {x--;} else

if (res == 1) {x++;}

} else if ((test == 2) && (x == 0)) {

if (res == 0) {x--;} else

if (res == 1) {x++;}

}

Now for the y direction...

test = (byte)((b[j+1] & 240) >> 4);

res = (byte)(b[j+1] & 15);

if (test <= 4) {test = 0;} else

if ((test > 4) && (test <= 9)) {test = 1;} else

if (test > 9) {test = 2;}

if (res <= 4) {res = 0;} else

if ((res > 4) && (res <= 9)) {res = 1;} else

if (res > 9) {res = 2;}
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if ((test == 0) && (y < 0)) {

if (res == 0) {y--;} else

if (res == 1) {y++;}

} else if ((test == 1) && (y > 0)) {

if (res == 0) {y--;} else

if (res == 1) {y++;}

} else if ((test == 2) && (y == 0)) {

if (res == 0) {y--;} else

if (res == 1) {y++;}

}

}

if ((x != 0) && (y != 0)) { // from when random start

// points were used.

fit += st_dist - (Math.abs(x) + Math.abs(y));

} else

fit += 4;

}

c.setFitness(fit);

return fit;

}

C.3.5 getCellConvergence

This implements the convergence calculation as detailed in the Environment class, Section B.1.11.

public double getCellConvergence(Cell cl) {

CellT2 c = (CellT2)cl;

First a check is made to see if the lookup table needs to be built, and if it does, then we built it.

if (convTable == null) {

int s = cells.size();

For GAs of a non-fixed length, we will need an extra step here to determine the longest one, and make
the table that size. In this case, each genome is comprised of 16 semantic units, and each of them can
contain a range of 16 values.

convTable = new int[16][16];

for (int i=0; i<s; i++) {

GenomeT2 g = (GenomeT2)((Cell)cells.get(i)).getGenome();

byte[] dna = g.getGene();

int t = dna.length*2;

for (int j=0; j<t; j+=2) {

convTable[j][(dna[j >> 1] & 240) >> 4]++;

convTable[j+1][dna[j >> 1] & 15]++;

}

}

}

Now that we know we have a valid table, we check the cell we have been given against it.

byte[] dna = ((GenomeT2)c.getGenome()).getGene();

int s = dna.length*2;

int popn = cells.size();

double count = 0.0;
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for (int i=0; i<s; i+=2) {

count += (double)convTable[i][(dna[i >> 1] & 240) >> 4] / popn;

count += (double)convTable[i+1][dna[i >> 1] & 15] / popn;

}

return count/s;

}

C.3.6 clearCellConvergence

This resets the convergence cache.

public void clearConvergence() {

convTable = null;

}

C.3.7 random

This simply gives a random number between two values.

public int random(int a, int b) {

return (int)(Math.random()*(b-a+1)+a);

}

}
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C.4 CellT2 class

This class contains the implementation-specific code to represent a cell. It provides a consistant
communications channel between the genome and the environment. This has a variable that contains
a reference to the DNA variable from the superclass, however it is of a different type. This allows the
relevant one to be selected depending on what is necessary (i.e. the full range of methods for internal
use, or a consistant set for passing around).

import java.util.*;

public class CellT2 extends Cell {

protected CellT2(String i, ArrayList p, double f,

boolean d, Genome g) {

super(i,p,g);

fitness = f;

dirtyBit = d;

}

C.4.1 mutate

This method mutates a genome by simply changing a random byte to a random value.

public void mutate() {

((GenomeT2)DNA).putGene((int)random(8),(byte)random(256));

dirtyBit = true;

}

C.4.2 crossover

This performs very simple one-point crossover between two cells.

public void crossover(Cell c) {

byte[] b = new byte[8];

GenomeT2 g = (GenomeT2)c.getGenome();

int cp = (int)random(8);

for (int i=0; i < cp; i++)

b[i] = ((GenomeT2)DNA).getGene(i);

for (int i=cp; i < 8; i++)

b[i] = g.getGene(i);

DNA = new GenomeT2(b);

dirtyBit = true;

}

C.4.3 copy

This does a copy of the cell, including creating a new genome and so on.

public Cell copy(String newID) {

return new CellT2(newID, (ArrayList)parents.clone(), fitness,

dirtyBit, DNA.copy());

}
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C.4.4 random

This returns a double in the range 0 <= x < r

public double random(int r) {

return Math.random()*r;

}

}
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C.5 GenomeT2

This class provides the domain-specific parts of the system. It stores the representation of the organ-
ism, and allows access to it. It also deals with anything to do with the structure of the data. In this
example, it is simply an array of eight bytes. The interpredation of these is up to the EnvironmentT2

class.

public class GenomeT2 extends Genome {

• byte[] data
The array where the data representing the organism is actually stored.

byte[] data = new byte[8];

C.5.1 Constructor

The size constructor is ignored, as this class requires fixed sizes. However, we add a default one that
constructs a random organism, and one that accepts an array of bytes sized >=8, and we use the first
8 sections in that to start our organism with.

public GenomeT2() {

randomise();

}

public GenomeT2(byte[] a) {

if (a.length < 8) {

System.err.println("GenomeT2(byte[]): array provided size "+

"must be >=8.");

System.exit(1);

}

for (int i=0; i<8; i++)

data[i] = a[i];

}

C.5.2 randomise

The starting point of a GA system is a collection of random algorithms. This kicks that off for each
new instance of GenomeT2.

public void randomise() {

for (int i=0; i<8; i++) {

data[i] = (byte)(Math.random()*256);

}

}

C.5.3 copy

In order to duplicate an organism so that it can be modified independantly, a deep copy must be
performed. This ensures that actual duplicates of necessary data structures are made, and references
aren’t referring to the same objects.

public Genome copy() {

return new GenomeT2(data);

}
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C.5.4 getGene (one argument)

In order for the fitness of this genome to be evaluated, it must be able to be accessed externally. This
provides that function, by returning the byte in array data at index b.

public byte getGene(int b) {

return data[b];

}

C.5.5 getGene (no arguments)

Its a bit more useful and efficient to be able to get the data in one lump.

public byte[] getGene() {

return data;

}

C.5.6 putGene

Somewhat the opposite of getGene, this allows a value to be placed into the geneome at an arbitrary
place. This allows things like external mutation to occur.

public void putGene(int b, byte val) {

data[b] = val;

}

}

73


