
Keeping up with Koha

Robin Sheat <robin@catalyst.net.nz>

31st October 2011



Where This Talk Began



What Came Up?

I People are stuck on version 2.2!
I (that came out January 6, 2005 - over 6 years ago)

I They wanted to know how to upgrade, and how to stop this
happening again.



What Came Up?

I People are stuck on version 2.2!
I (that came out January 6, 2005 - over 6 years ago)

I They wanted to know how to upgrade, and how to stop this
happening again.



Well, What’s the Answer?

Upstreaming



What We’re Going to Cover

Introduction

About Upstreaming

Problems With Not Upstreaming

Benefits of Upstreaming

When Not to Upstream

How To Upgrade

The Process of Upstreaming

How to Avoid Slipping Behind



What Is Upstreaming?



What Is Upstreaming?

I Upstreaming is the process of taking all your local
customisations and sending them back to the project.

I It’s pretty common in the Free Software world.



If it’s such a great idea...
...why doesn’t everyone do it?

I People don’t know how
I ...come to the hackfest!

I It takes time
I ...it’s true, it does.

I People (usually management) don’t understand Free Software
licensing

I ...this doesn’t seem to apply to libraries.



If it’s such a great idea...
...why doesn’t everyone do it?

I People don’t know how
I ...come to the hackfest!

I It takes time
I ...it’s true, it does.

I People (usually management) don’t understand Free Software
licensing

I ...this doesn’t seem to apply to libraries.



If it’s such a great idea...
...why doesn’t everyone do it?

I People don’t know how
I ...come to the hackfest!

I It takes time
I ...it’s true, it does.

I People (usually management) don’t understand Free Software
licensing

I ...this doesn’t seem to apply to libraries.



What Not Upstreaming Looks Like



What Upstreaming Looks Like



Problems With Not Upstreaming
It’s hard to upgrade

I Miss out on all the cool new features.

I Lots of work when you find you do need to upgrade.

I Have to manually keep an eye on anything important, e.g.
security patches



Problems With Not Upstreaming
It’s hard to upgrade

I Miss out on all the cool new features.

I Lots of work when you find you do need to upgrade.

I Have to manually keep an eye on anything important, e.g.
security patches



Problems With Not Upstreaming
It’s hard to upgrade

I Miss out on all the cool new features.

I Lots of work when you find you do need to upgrade.

I Have to manually keep an eye on anything important, e.g.
security patches



Problems With Not Upstreaming

The further away you get from being current,

the harder it is to upgrade.

The biggest cause of this is customisations.



Problems With Not Upstreaming

The further away you get from being current,

the harder it is to upgrade.

The biggest cause of this is customisations.



Aside: About Koha Release Cycles

I Small releases every month

I Big releases every six months

I A lot can change in a very short space of time, making it
harder to keep up.



Aside: About Koha Release Cycles

I Small releases every month

I Big releases every six months

I A lot can change in a very short space of time, making it
harder to keep up.



Benefits of Upstreaming
Makes Upgrading Easier

I Keeping up to date will be harder if you have your own
changes.

I Upgrading with customisations causes:
I Conflicts
I A need to re-test
I New features replacing your customisations



Benefits of Upstreaming
Makes Upgrading Easier

I Keeping up to date will be harder if you have your own
changes.

I Upgrading with customisations causes:
I Conflicts
I A need to re-test
I New features replacing your customisations



Benefits of Upstreaming
Everyone Gets to Use Your Features

I Libraries don’t have competitive advantage with their ILS

I Credit!
I They’re supported by other people

I No more maintenance!



Benefits of Upstreaming
Everyone Gets to Use Your Features

I Libraries don’t have competitive advantage with their ILS

I Credit!

I They’re supported by other people
I No more maintenance!



Benefits of Upstreaming
Everyone Gets to Use Your Features

I Libraries don’t have competitive advantage with their ILS

I Credit!
I They’re supported by other people

I No more maintenance!



Benefits of Upstreaming
Become Part of the Community

I Get to try/test features before they’re released

I Get to meet cool people at conferences



Benefits of Upstreaming
Become Part of the Community

I Get to try/test features before they’re released

I Get to meet cool people at conferences



When Not to Upstream
It’s Not Always the Way

Sometimes you shouldn’t upstream.



When Not to Upstream
Really Specific Customisations

For example:

I integrating with an intranet

I custom authentication systems

I things that might break the specifications



When Not to Upstream
Really Small Changes

I Upstreaming may be more trouble than it’s worth

I Unless others might find it useful
I More common than you might think
I E.g. “fines” changing to “fines and charges”



When Not to Upstream
Really Small Changes

I Upstreaming may be more trouble than it’s worth
I Unless others might find it useful

I More common than you might think
I E.g. “fines” changing to “fines and charges”



When Not to Upstream
Sometimes It May Be Worth Upstreaming Anyway...

I Features can often be generalised to work for other people

I Make a syspref or two that allow it to be configured



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git

I This will allow you to merge upstream changes in easier.
I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



How To Upgrade

So you’ve decided to upgrade...

...but you’re out of date, and have

customisations.

There are really two options:



How To Upgrade

So you’ve decided to upgrade...

...but you’re out of date, and have

customisations.
There are really two options:



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Throw it all away, start again

I But keep the data!
I This is quite easy if you’re on a version 3 series already.
I Harder from 2 and lower.
I Too many people are stuck on 2.2.

I Likely to be the best method for large changes
I Now you can reimplement the changes you need, and upstream

them!



How To Upgrade
Throw it all away, start again

I But keep the data!
I This is quite easy if you’re on a version 3 series already.
I Harder from 2 and lower.
I Too many people are stuck on 2.2.

I Likely to be the best method for large changes
I Now you can reimplement the changes you need, and upstream

them!



The Process of Upstreaming
Different Approaches

I Do everything in-house, throw it over the wall when finished.
I Often the approach taken by companies who don’t “get” Free

Software.



The Process of Upstreaming
Different Approaches

I Work with the community every step of the way, uploading
every change.

I This is the ideal.
I Not always practical.



The Process of Upstreaming
Different Approaches

I Best way: a mix of these approaches

I For little things, just do it.

I For huge things, ask for comments, help, write an RFC, etc.

I For things in the middle, find people who will help and give
you feedback.



The Process of Upstreaming
Different Approaches

I Best way: a mix of these approaches

I For little things, just do it.

I For huge things, ask for comments, help, write an RFC, etc.

I For things in the middle, find people who will help and give
you feedback.



The Process of Upstreaming
Different Approaches

I Best way: a mix of these approaches

I For little things, just do it.

I For huge things, ask for comments, help, write an RFC, etc.

I For things in the middle, find people who will help and give
you feedback.



The Process of Upstreaming
Regarding Git

Use Git

No really. Always use Git.



The Process of Upstreaming
Regarding Git

Use Git

No really. Always use Git.



The Process of Upstreaming
Prepare the Patch

I Create a ticket at the Koha bugtracker.

I Follow the coding guidelines.

http://bugs.koha-community.org


The Process of Upstreaming
Prepare the Patch

I Create a ticket at the Koha bugtracker.

I Follow the coding guidelines.

http://bugs.koha-community.org


The Process of Upstreaming
Prepare the Patch

I Prepare it against master.

“Do NOT fall into the trap of adding more and
more stuff to an out-of-tree project. It just makes it
harder and harder to get it merged. There are many

examples of this.”
— Andrew Morton (Linux Kernel Developer)



The Process of Upstreaming
Prepare the Patch

I Prepare it against master.

“Do NOT fall into the trap of adding more and
more stuff to an out-of-tree project. It just makes it
harder and harder to get it merged. There are many

examples of this.”
— Andrew Morton (Linux Kernel Developer)



The Process of Upstreaming
Prepare the Patch

I If it’s a bug: also make a patch against the current stable
version.

I If it changes behaviour: hide it behind a system preference.

I Make sure it updates the database schema, and
updatedatabase.pl.



The Process of Upstreaming
Prepare the Patch

I If it’s a bug: also make a patch against the current stable
version.

I If it changes behaviour: hide it behind a system preference.

I Make sure it updates the database schema, and
updatedatabase.pl.



The Process of Upstreaming
Prepare the Patch

I If it’s a bug: also make a patch against the current stable
version.

I If it changes behaviour: hide it behind a system preference.

I Make sure it updates the database schema, and
updatedatabase.pl.



The Process of Upstreaming
Submit the Patch

I Attach your patch to the bug, send it to the mailing list.

I Revise it in response to comments.

I Be prepared to throw it away if something similar or better
comes along.

I For medium-sized changes, be prepared for a 20% or 30%
overhead when upstreaming.

I Unless it takes ages to get in, then it might need a lot of
refactoring.



The Process of Upstreaming
Submit the Patch

I Attach your patch to the bug, send it to the mailing list.

I Revise it in response to comments.

I Be prepared to throw it away if something similar or better
comes along.

I For medium-sized changes, be prepared for a 20% or 30%
overhead when upstreaming.

I Unless it takes ages to get in, then it might need a lot of
refactoring.



The Process of Upstreaming
Submit the Patch

I Attach your patch to the bug, send it to the mailing list.

I Revise it in response to comments.

I Be prepared to throw it away if something similar or better
comes along.

I For medium-sized changes, be prepared for a 20% or 30%
overhead when upstreaming.

I Unless it takes ages to get in, then it might need a lot of
refactoring.



The Process of Upstreaming
Submit the Patch

I Attach your patch to the bug, send it to the mailing list.

I Revise it in response to comments.

I Be prepared to throw it away if something similar or better
comes along.

I For medium-sized changes, be prepared for a 20% or 30%
overhead when upstreaming.

I Unless it takes ages to get in, then it might need a lot of
refactoring.



How to Avoid Slipping Behind
If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.
I Try to get other libraries involved.

I Pooling resources is a big strength of Free Software.



How to Avoid Slipping Behind
If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.
I Try to get other libraries involved.

I Pooling resources is a big strength of Free Software.



How to Avoid Slipping Behind
If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.
I Try to get other libraries involved.

I Pooling resources is a big strength of Free Software.



How to Avoid Slipping Behind
If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.

I Try to get other libraries involved.
I Pooling resources is a big strength of Free Software.



How to Avoid Slipping Behind
If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.
I Try to get other libraries involved.

I Pooling resources is a big strength of Free Software.



How to Avoid Slipping Behind
Try to keep up to date

I Always develop off master
I Perhaps run a testing system with master so you can see

what’s happening there.

I Maintain your features
I You’ll have to keep them up to date until they get into a

stable branch.

I Keep your production versions fairly up to date.



How to Avoid Slipping Behind
Try to keep up to date

I Always develop off master
I Perhaps run a testing system with master so you can see

what’s happening there.

I Maintain your features
I You’ll have to keep them up to date until they get into a

stable branch.

I Keep your production versions fairly up to date.



How to Avoid Slipping Behind
Try to keep up to date

I Always develop off master
I Perhaps run a testing system with master so you can see

what’s happening there.

I Maintain your features
I You’ll have to keep them up to date until they get into a

stable branch.

I Keep your production versions fairly up to date.



In Conclusion

I Get up to date.

I Stay there.

I Work with the community.

I Accept that it’ll seem like more work, but probably won’t
really be.


	Introduction
	About Upstreaming
	Problems With Not Upstreaming
	Benefits of Upstreaming
	When Not to Upstream
	How To Upgrade
	The Process of Upstreaming
	How to Avoid Slipping Behind

