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Well, What’s the Answer?

Upstreaming
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I Upstreaming is the process of taking all your local
customisations and sending them back to the project.

I It’s pretty common in the Free Software world.



If it’s such a great idea...
...why doesn’t everyone do it?

I People don’t know how
I ...come to the hackfest!

I It takes time
I ...it’s true, it does.

I People (usually management) don’t understand Free Software
licensing

I ...this doesn’t seem to apply to libraries.
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I Have to manually keep an eye on anything important, e.g.
security patches
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changes.

I Upgrading with customisations causes:
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I A need to re-test
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When Not to Upstream
It’s Not Always the Way

Sometimes you shouldn’t upstream.



When Not to Upstream
Really Specific Customisations

For example:

I integrating with an intranet

I custom authentication systems

I things that might break the specifications
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When Not to Upstream
Sometimes It May Be Worth Upstreaming Anyway...

I Features can often be generalised to work for other people

I Make a syspref or two that allow it to be configured



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git

I This will allow you to merge upstream changes in easier.
I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



When Not to Upstream

In case you really can’t upstream something...

I Do it in Git
I This will allow you to merge upstream changes in easier.

I Learn to rebase: git rebase 3.6.1

I Update regularly
I Smaller upstream changes more often are easier to deal with

than big ones every so often

I Watch for big upcoming changes
I Like the switch to Template::Toolkit

I The change between releases (e.g. 3.6 to 3.8) will always be
hard



How To Upgrade

So you’ve decided to upgrade...

...but you’re out of date, and have

customisations.

There are really two options:



How To Upgrade

So you’ve decided to upgrade...

...but you’re out of date, and have

customisations.
There are really two options:



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Port your changes

I If they’re big, this can be a lot of work.
I Perhaps there’s something similar in the newer versions.

I If they’re small, it might not be hard.

I Support companies can help with this.



How To Upgrade
Throw it all away, start again

I But keep the data!
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I Too many people are stuck on 2.2.

I Likely to be the best method for large changes
I Now you can reimplement the changes you need, and upstream
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Different Approaches

I Do everything in-house, throw it over the wall when finished.
I Often the approach taken by companies who don’t “get” Free

Software.
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I Attach your patch to the bug, send it to the mailing list.

I Revise it in response to comments.

I Be prepared to throw it away if something similar or better
comes along.

I For medium-sized changes, be prepared for a 20% or 30%
overhead when upstreaming.

I Unless it takes ages to get in, then it might need a lot of
refactoring.
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If you’re implementing a new feature...

I Release early, release often.

I Work in self-contained units (where possible.)

I Get feedback from other developers.

I Try to find others to help.
I Try to get other libraries involved.

I Pooling resources is a big strength of Free Software.
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I Perhaps run a testing system with master so you can see

what’s happening there.

I Maintain your features
I You’ll have to keep them up to date until they get into a

stable branch.

I Keep your production versions fairly up to date.
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In Conclusion

I Get up to date.

I Stay there.

I Work with the community.

I Accept that it’ll seem like more work, but probably won’t
really be.
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